Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{x}{1+i}+\frac{y}{1-2i}-1& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{-2ix+iy+x+y}{-2i^2-i+1}-1 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{-2ix+iy+x+y}{2-i+1}-1 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{-2ix+iy+x+y}{-i+3}-1 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{-2ix+iy+i+x+y-3}{-i+3}\end{aligned} $$ | |
| ① | Add $ \dfrac{x}{1+i} $ and $ \dfrac{y}{1-2i} $ to get $ \dfrac{ \color{purple}{ -2ix+iy+x+y } }{ -2i^2-i+1 }$. To add raitonal expressions, both fractions must have the same denominator. |
| ② | $$ -2i^2 = -2 \cdot (-1) = 2 $$ |
| ③ | Combine like terms: $$ \color{blue}{2} -i+ \color{blue}{1} = -i+ \color{blue}{3} $$ |
| ④ | Subtract $1$ from $ \dfrac{-2ix+iy+x+y}{-i+3} $ to get $ \dfrac{ \color{purple}{ -2ix+iy+i+x+y-3 } }{ -i+3 }$. Step 1: Write $ 1 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |