Tap the blue circles to see an explanation.
| $$ \begin{aligned}sqrt(4-\frac{9}{2})^2+\frac{9}{2}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}sqrt(16-18-18+\frac{81}{4})+\frac{9}{2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}sqrt\cdot\frac{1}{4}+\frac{9}{2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{qrst}{4}+\frac{9}{2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{qrst+18}{4}\end{aligned} $$ | |
| ① | $$ (4-\frac{9}{2})^2 = \left( 4-\frac{ 9 }{ 2 } \right) \cdot \left( 4-\frac{ 9 }{ 2 } \right) = 16-18-18 + \frac{ 81 }{ 4 } $$ |
| ② | Combine like terms |
| ③ | Multiply $qrst$ by $ \dfrac{1}{4} $ to get $ \dfrac{ qrst }{ 4 } $. Step 1: Write $ qrst $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} qrst \cdot \frac{1}{4} & \xlongequal{\text{Step 1}} \frac{qrst}{\color{red}{1}} \cdot \frac{1}{4} \xlongequal{\text{Step 2}} \frac{ qrst \cdot 1 }{ 1 \cdot 4 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ qrst }{ 4 } \end{aligned} $$ |
| ④ | Add $ \dfrac{qrst}{4} $ and $ \dfrac{9}{2} $ to get $ \dfrac{ \color{purple}{ qrst+18 } }{ 4 }$. To add raitonal expressions, both fractions must have the same denominator. |