Tap the blue circles to see an explanation.
| $$ \begin{aligned}sini\frac{pi}{2}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}sin\frac{i^2p}{2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{i^3nps}{2}\end{aligned} $$ | |
| ① | Multiply $i$ by $ \dfrac{ip}{2} $ to get $ \dfrac{ i^2p }{ 2 } $. Step 1: Write $ i $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} i \cdot \frac{ip}{2} & \xlongequal{\text{Step 1}} \frac{i}{\color{red}{1}} \cdot \frac{ip}{2} \xlongequal{\text{Step 2}} \frac{ i \cdot ip }{ 1 \cdot 2 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ i^2p }{ 2 } \end{aligned} $$ |
| ② | Multiply $ins$ by $ \dfrac{i^2p}{2} $ to get $ \dfrac{ i^3nps }{ 2 } $. Step 1: Write $ ins $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} ins \cdot \frac{i^2p}{2} & \xlongequal{\text{Step 1}} \frac{ins}{\color{red}{1}} \cdot \frac{i^2p}{2} \xlongequal{\text{Step 2}} \frac{ ins \cdot i^2p }{ 1 \cdot 2 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ i^3nps }{ 2 } \end{aligned} $$ |