Tap the blue circles to see an explanation.
| $$ \begin{aligned}i+2-\frac{2i-3}{4+i}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}i+2-\frac{-10+11i}{17} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{6i+44}{17}\end{aligned} $$ | |
| ① | Divide $ \, -3+2i \, $ by $ \, 4+i \, $ to get $\,\, \dfrac{-10+11i}{17} $. ( view steps ) |
| ② | Subtract $ \dfrac{-10+11i}{17} $ from $ i+2 $ to get $ \dfrac{ \color{purple}{ 6i+44 } }{ 17 }$. Step 1: Write $ i+2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |