Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{i}{\frac{2}{3}-i}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{i}{\frac{-3i+2}{3}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{3i}{-3i+2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{-9+6i}{13}\end{aligned} $$ | |
| ① | Subtract $i$ from $ \dfrac{2}{3} $ to get $ \dfrac{ \color{purple}{ -3i+2 } }{ 3 }$. Step 1: Write $ i $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ② | Divide $i$ by $ \dfrac{-3i+2}{3} $ to get $ \dfrac{ 3i }{ -3i+2 } $. Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Write $ i $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 3: Multiply numerators and denominators. Step 4: Simplify numerator and denominator. $$ \begin{aligned} \frac{i}{ \frac{\color{blue}{-3i+2}}{\color{blue}{3}} } & \xlongequal{\text{Step 1}} i \cdot \frac{\color{blue}{3}}{\color{blue}{-3i+2}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{i}{\color{red}{1}} \cdot \frac{3}{-3i+2} \xlongequal{\text{Step 3}} \frac{ i \cdot 3 }{ 1 \cdot \left( -3i+2 \right) } = \\[1ex] & \xlongequal{\text{Step 4}} \frac{ 3i }{ -3i+2 } \end{aligned} $$ |
| ③ | Divide $ \, 3i \, $ by $ \, 2-3i \, $ to get $\,\, \dfrac{-9+6i}{13} $. ( view steps ) |