Tap the blue circles to see an explanation.
| $$ \begin{aligned}9+\frac{i}{2}+7\frac{i}{3}+\frac{1}{9}+3i& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{i+18}{2}+\frac{7i}{3}+\frac{27i+1}{9} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{17i+54}{6}+\frac{27i+1}{9} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}\frac{105i+164}{18}\end{aligned} $$ | |
| ① | Add $9$ and $ \dfrac{i}{2} $ to get $ \dfrac{ \color{purple}{ i+18 } }{ 2 }$. Step 1: Write $ 9 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ② | Multiply $7$ by $ \dfrac{i}{3} $ to get $ \dfrac{ 7i }{ 3 } $. Step 1: Write $ 7 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 7 \cdot \frac{i}{3} & \xlongequal{\text{Step 1}} \frac{7}{\color{red}{1}} \cdot \frac{i}{3} \xlongequal{\text{Step 2}} \frac{ 7 \cdot i }{ 1 \cdot 3 } \xlongequal{\text{Step 3}} \frac{ 7i }{ 3 } \end{aligned} $$ |
| ③ | Add $ \dfrac{1}{9} $ and $ 3i $ to get $ \dfrac{ \color{purple}{ 27i+1 } }{ 9 }$. Step 1: Write $ 3i $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ④ | Add $ \dfrac{i+18}{2} $ and $ \dfrac{7i}{3} $ to get $ \dfrac{ \color{purple}{ 17i+54 } }{ 6 }$. To add raitonal expressions, both fractions must have the same denominator. |
| ⑤ | Add $ \dfrac{1}{9} $ and $ 3i $ to get $ \dfrac{ \color{purple}{ 27i+1 } }{ 9 }$. Step 1: Write $ 3i $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ⑥ | Add $ \dfrac{17i+54}{6} $ and $ \dfrac{27i+1}{9} $ to get $ \dfrac{ \color{purple}{ 105i+164 } }{ 18 }$. To add raitonal expressions, both fractions must have the same denominator. |