Tap the blue circles to see an explanation.
| $$ \begin{aligned}9 \cdot \frac{i}{6}-5i& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{9i}{6}-5i \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-\frac{21i}{6}\end{aligned} $$ | |
| ① | Multiply $9$ by $ \dfrac{i}{6} $ to get $ \dfrac{ 9i }{ 6 } $. Step 1: Write $ 9 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 9 \cdot \frac{i}{6} & \xlongequal{\text{Step 1}} \frac{9}{\color{red}{1}} \cdot \frac{i}{6} \xlongequal{\text{Step 2}} \frac{ 9 \cdot i }{ 1 \cdot 6 } \xlongequal{\text{Step 3}} \frac{ 9i }{ 6 } \end{aligned} $$ |
| ② | Subtract $5i$ from $ \dfrac{9i}{6} $ to get $ \dfrac{ \color{purple}{ -21i } }{ 6 }$. Step 1: Write $ 5i $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |