Tap the blue circles to see an explanation.
| $$ \begin{aligned}8+j\cdot\frac{8}{j}\cdot8& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(1+j\cdot\frac{8}{j})\cdot8 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(1+8)\cdot8 \xlongequal{ } \\[1 em] & \xlongequal{ }9\cdot8 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}72\end{aligned} $$ | |
| ① | Use the distributive property. |
| ② | Multiply $j$ by $ \dfrac{8}{j} $ to get $ 8$. Step 1: Write $ j $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Cancel $ \color{blue}{ j } $ in first and second fraction. Step 3: Multiply numerators and denominators. $$ \begin{aligned} j \cdot \frac{8}{j} & \xlongequal{\text{Step 1}} \frac{j}{\color{red}{1}} \cdot \frac{8}{j} \xlongequal{\text{Step 2}} \frac{\color{blue}{1}}{1} \cdot \frac{8}{\color{blue}{1}} = \\[1ex] &= \frac{8}{1} =8 \end{aligned} $$ |
| ③ | $ 9 \cdot 8 = 72 $ |