Tap the blue circles to see an explanation.
| $$ \begin{aligned}7 \cdot \frac{i}{9}-10i& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{7i}{9}-10i \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-\frac{83i}{9}\end{aligned} $$ | |
| ① | Multiply $7$ by $ \dfrac{i}{9} $ to get $ \dfrac{ 7i }{ 9 } $. Step 1: Write $ 7 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 7 \cdot \frac{i}{9} & \xlongequal{\text{Step 1}} \frac{7}{\color{red}{1}} \cdot \frac{i}{9} \xlongequal{\text{Step 2}} \frac{ 7 \cdot i }{ 1 \cdot 9 } \xlongequal{\text{Step 3}} \frac{ 7i }{ 9 } \end{aligned} $$ |
| ② | Subtract $10i$ from $ \dfrac{7i}{9} $ to get $ \dfrac{ \color{purple}{ -83i } }{ 9 }$. Step 1: Write $ 10i $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |