Tap the blue circles to see an explanation.
| $$ \begin{aligned}7-\frac{3}{4}i-(10+\frac{5}{4}i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}7-\frac{3i}{4}-(10+\frac{5i}{4}) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{-3i+28}{4}-\frac{5i+40}{4} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{-8i-12}{4}\end{aligned} $$ | |
| ① | Multiply $ \dfrac{3}{4} $ by $ i $ to get $ \dfrac{ 3i }{ 4 } $. Step 1: Write $ i $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{3}{4} \cdot i & \xlongequal{\text{Step 1}} \frac{3}{4} \cdot \frac{i}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 3 \cdot i }{ 4 \cdot 1 } \xlongequal{\text{Step 3}} \frac{ 3i }{ 4 } \end{aligned} $$ |
| ② | Multiply $ \dfrac{5}{4} $ by $ i $ to get $ \dfrac{ 5i }{ 4 } $. Step 1: Write $ i $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{5}{4} \cdot i & \xlongequal{\text{Step 1}} \frac{5}{4} \cdot \frac{i}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 5 \cdot i }{ 4 \cdot 1 } \xlongequal{\text{Step 3}} \frac{ 5i }{ 4 } \end{aligned} $$ |
| ③ | Subtract $ \dfrac{3i}{4} $ from $ 7 $ to get $ \dfrac{ \color{purple}{ -3i+28 } }{ 4 }$. Step 1: Write $ 7 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ④ | Add $10$ and $ \dfrac{5i}{4} $ to get $ \dfrac{ \color{purple}{ 5i+40 } }{ 4 }$. Step 1: Write $ 10 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ⑤ | Subtract $ \dfrac{5i+40}{4} $ from $ \dfrac{-3i+28}{4} $ to get $ \dfrac{-8i-12}{4} $. To subtract expressions with the same denominators, we subtract the numerators and write the result over the common denominator. $$ \begin{aligned} \frac{-3i+28}{4} - \frac{5i+40}{4} & = \frac{-3i+28}{\color{blue}{4}} - \frac{5i+40}{\color{blue}{4}} =\frac{ -3i+28 - \left( 5i+40 \right) }{ \color{blue}{ 4 }} = \\[1ex] &= \frac{-8i-12}{4} \end{aligned} $$ |