Tap the blue circles to see an explanation.
| $$ \begin{aligned}6i\cdot\frac{9}{2}-4(\frac{3}{4}+5i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{54i}{2}-4\frac{20i+3}{4} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{54i}{2}-(20i+3) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{14i-6}{2}\end{aligned} $$ | |
| ① | Multiply $6i$ by $ \dfrac{9}{2} $ to get $ \dfrac{ 54i }{ 2 } $. Step 1: Write $ 6i $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 6i \cdot \frac{9}{2} & \xlongequal{\text{Step 1}} \frac{6i}{\color{red}{1}} \cdot \frac{9}{2} \xlongequal{\text{Step 2}} \frac{ 6i \cdot 9 }{ 1 \cdot 2 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 54i }{ 2 } \end{aligned} $$ |
| ② | Add $ \dfrac{3}{4} $ and $ 5i $ to get $ \dfrac{ \color{purple}{ 20i+3 } }{ 4 }$. Step 1: Write $ 5i $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ③ | Multiply $6i$ by $ \dfrac{9}{2} $ to get $ \dfrac{ 54i }{ 2 } $. Step 1: Write $ 6i $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 6i \cdot \frac{9}{2} & \xlongequal{\text{Step 1}} \frac{6i}{\color{red}{1}} \cdot \frac{9}{2} \xlongequal{\text{Step 2}} \frac{ 6i \cdot 9 }{ 1 \cdot 2 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 54i }{ 2 } \end{aligned} $$ |
| ④ | Multiply $4$ by $ \dfrac{20i+3}{4} $ to get $ 20i+3$. Step 1: Write $ 4 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Cancel $ \color{blue}{ 4 } $ in first and second fraction. Step 3: Multiply numerators and denominators. Step 4: Simplify numerator and denominator. $$ \begin{aligned} 4 \cdot \frac{20i+3}{4} & \xlongequal{\text{Step 1}} \frac{4}{\color{red}{1}} \cdot \frac{20i+3}{4} \xlongequal{\text{Step 2}} \frac{\color{blue}{1}}{1} \cdot \frac{20i+3}{\color{blue}{1}} = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 1 \cdot \left( 20i+3 \right) }{ 1 \cdot 1 } \xlongequal{\text{Step 4}} \frac{ 20i+3 }{ 1 } =20i+3 \end{aligned} $$ |
| ⑤ | Subtract $20i+3$ from $ \dfrac{54i}{2} $ to get $ \dfrac{ \color{purple}{ 14i-6 } }{ 2 }$. Step 1: Write $ 20i+3 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |