Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{6}{3-2i}-\frac{5-i}{1+i}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{6}{3-2i}-(2-3i) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{-6i^2+13i}{-2i+3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{6+13i}{-2i+3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{-8+51i}{13}\end{aligned} $$ | |
| ① | Divide $ \, 5-i \, $ by $ \, 1+i \, $ to get $\,\, 2-3i $. ( view steps ) |
| ② | Subtract $2-3i$ from $ \dfrac{6}{3-2i} $ to get $ \dfrac{ \color{purple}{ -6i^2+13i } }{ -2i+3 }$. Step 1: Write $ 2-3i $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ③ | $$ -6i^2 = -6 \cdot (-1) = 6 $$ |
| ④ | Divide $ \, 6+13i \, $ by $ \, 3-2i \, $ to get $\,\, \dfrac{-8+51i}{13} $. ( view steps ) |