Tap the blue circles to see an explanation.
| $$ \begin{aligned}50+35 \cdot \frac{i}{8}+5i& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}50+\frac{35i}{8}+5i \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{35i+400}{8}+5i \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{75i+400}{8}\end{aligned} $$ | |
| ① | Multiply $35$ by $ \dfrac{i}{8} $ to get $ \dfrac{ 35i }{ 8 } $. Step 1: Write $ 35 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 35 \cdot \frac{i}{8} & \xlongequal{\text{Step 1}} \frac{35}{\color{red}{1}} \cdot \frac{i}{8} \xlongequal{\text{Step 2}} \frac{ 35 \cdot i }{ 1 \cdot 8 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 35i }{ 8 } \end{aligned} $$ |
| ② | Add $50$ and $ \dfrac{35i}{8} $ to get $ \dfrac{ \color{purple}{ 35i+400 } }{ 8 }$. Step 1: Write $ 50 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ③ | Add $ \dfrac{35i+400}{8} $ and $ 5i $ to get $ \dfrac{ \color{purple}{ 75i+400 } }{ 8 }$. Step 1: Write $ 5i $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |