Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{5}{i}+\frac{2}{i^3}-\frac{20}{i^{18}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{5}{i}+\frac{2}{-i}-\frac{20}{-1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-\frac{3i}{-i^2}-(-\frac{20}{1}) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}-\frac{3i}{1}-(-20) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}-3i+20\end{aligned} $$ | |
| ① | $$ i^3 = \color{blue}{i^2} \cdot i =
( \color{blue}{-1}) \cdot i =
- \, i $$$$ i^{18} = i^{4 \cdot 4 + 2} =
\left( i^4 \right)^{ 4 } \cdot i^2 =
1^{ 4 } \cdot (-1) =
-1 = -1 $$ |
| ② | Add $ \dfrac{5}{i} $ and $ \dfrac{2}{-i} $ to get $ \dfrac{ \color{purple}{ -3i } }{ -i^2 }$. To add raitonal expressions, both fractions must have the same denominator. |
| ③ | Place minus sign in front of the fraction. |
| ④ | $$ -i^2 = -(-1) = 1 $$ |
| ⑤ | Remove 1 from denominator. |
| ⑥ | Subtract $-20$ from $ \dfrac{-3i}{1} $ to get $ \dfrac{ -3i - \left( -20 \right) }{ \color{blue}{ 1 }}$. Step 1: Write $ -20 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract expressions with the same denominators, we subtract the numerators and write the result over the common denominator. $$ \begin{aligned} \frac{-3i}{1} --20 & \xlongequal{\text{Step 1}} \frac{-3i}{1} - \frac{-20}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{-3i}{\color{blue}{1}} - \frac{-20}{\color{blue}{1}} = \\[1ex] &=\frac{ -3i - \left( -20 \right) }{ \color{blue}{ 1 }} \end{aligned} $$ |