Tap the blue circles to see an explanation.
| $$ \begin{aligned}5 \cdot \frac{4i+3}{8+4i}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}5 \cdot \frac{2+i}{4} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{5i+10}{4}\end{aligned} $$ | |
| ① | Divide $ \, 3+4i \, $ by $ \, 8+4i \, $ to get $\,\, \dfrac{2+i}{4} $. ( view steps ) |
| ② | Multiply $5$ by $ \dfrac{2+i}{4} $ to get $ \dfrac{5i+10}{4} $. Step 1: Write $ 5 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 5 \cdot \frac{2+i}{4} & \xlongequal{\text{Step 1}} \frac{5}{\color{red}{1}} \cdot \frac{2+i}{4} \xlongequal{\text{Step 2}} \frac{ 5 \cdot \left( 2+i \right) }{ 1 \cdot 4 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 10+5i }{ 4 } = \frac{5i+10}{4} \end{aligned} $$ |