Tap the blue circles to see an explanation.
| $$ \begin{aligned}4+i-\frac{5-12i}{13}\cdot(1+i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}4+i-\frac{-12i^2-7i+5}{13} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}4+i-\frac{12-7i+5}{13} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}4+i-\frac{-7i+17}{13} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{20i+35}{13}\end{aligned} $$ | |
| ① | Multiply $ \dfrac{5-12i}{13} $ by $ 1+i $ to get $ \dfrac{-12i^2-7i+5}{13} $. Step 1: Write $ 1+i $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{5-12i}{13} \cdot 1+i & \xlongequal{\text{Step 1}} \frac{5-12i}{13} \cdot \frac{1+i}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ \left( 5-12i \right) \cdot \left( 1+i \right) }{ 13 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 5+5i-12i-12i^2 }{ 13 } = \frac{-12i^2-7i+5}{13} \end{aligned} $$ |
| ② | $$ -12i^2 = -12 \cdot (-1) = 12 $$ |
| ③ | Combine like terms: $$ \color{blue}{12} -7i+ \color{blue}{5} = -7i+ \color{blue}{17} $$ |
| ④ | Subtract $ \dfrac{-7i+17}{13} $ from $ 4+i $ to get $ \dfrac{ \color{purple}{ 20i+35 } }{ 13 }$. Step 1: Write $ 4+i $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |