Tap the blue circles to see an explanation.
| $$ \begin{aligned}4+5 \cdot \frac{i}{3}-2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}4+\frac{5i}{3}-2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{5i+12}{3}-2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{5i+6}{3}\end{aligned} $$ | |
| ① | Multiply $5$ by $ \dfrac{i}{3} $ to get $ \dfrac{ 5i }{ 3 } $. Step 1: Write $ 5 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 5 \cdot \frac{i}{3} & \xlongequal{\text{Step 1}} \frac{5}{\color{red}{1}} \cdot \frac{i}{3} \xlongequal{\text{Step 2}} \frac{ 5 \cdot i }{ 1 \cdot 3 } \xlongequal{\text{Step 3}} \frac{ 5i }{ 3 } \end{aligned} $$ |
| ② | Add $4$ and $ \dfrac{5i}{3} $ to get $ \dfrac{ \color{purple}{ 5i+12 } }{ 3 }$. Step 1: Write $ 4 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ③ | Subtract $2$ from $ \dfrac{5i+12}{3} $ to get $ \dfrac{ \color{purple}{ 5i+6 } }{ 3 }$. Step 1: Write $ 2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |