Tap the blue circles to see an explanation.
| $$ \begin{aligned}4+3 \cdot \frac{i}{3}-4i& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}4+i-4i \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-3i+4\end{aligned} $$ | |
| ① | Multiply $3$ by $ \dfrac{i}{3} $ to get $ i$. Step 1: Write $ 3 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Cancel $ \color{blue}{ 3 } $ in first and second fraction. Step 3: Multiply numerators and denominators. Step 4: Simplify numerator and denominator. $$ \begin{aligned} 3 \cdot \frac{i}{3} & \xlongequal{\text{Step 1}} \frac{3}{\color{red}{1}} \cdot \frac{i}{3} \xlongequal{\text{Step 2}} \frac{\color{blue}{1}}{1} \cdot \frac{i}{\color{blue}{1}} = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 1 \cdot i }{ 1 \cdot 1 } \xlongequal{\text{Step 4}} \frac{ i }{ 1 } =i \end{aligned} $$ |
| ② | Combine like terms: $$ 4+ \color{blue}{i} \color{blue}{-4i} = \color{blue}{-3i} +4 $$ |