Tap the blue circles to see an explanation.
| $$ \begin{aligned}4+64 \cdot \frac{i}{8+8i}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}4+64 \cdot \frac{1+i}{16} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}4+\frac{64i+64}{16} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{64i+128}{16}\end{aligned} $$ | |
| ① | Divide $ \, i \, $ by $ \, 8+8i \, $ to get $\,\, \dfrac{1+i}{16} $. ( view steps ) |
| ② | Multiply $64$ by $ \dfrac{1+i}{16} $ to get $ \dfrac{64i+64}{16} $. Step 1: Write $ 64 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 64 \cdot \frac{1+i}{16} & \xlongequal{\text{Step 1}} \frac{64}{\color{red}{1}} \cdot \frac{1+i}{16} \xlongequal{\text{Step 2}} \frac{ 64 \cdot \left( 1+i \right) }{ 1 \cdot 16 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 64+64i }{ 16 } = \frac{64i+64}{16} \end{aligned} $$ |
| ③ | Add $4$ and $ \dfrac{64i+64}{16} $ to get $ \dfrac{ \color{purple}{ 64i+128 } }{ 16 }$. Step 1: Write $ 4 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |