Tap the blue circles to see an explanation.
| $$ \begin{aligned}4 \cdot \frac{i}{-10+5i}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}4 \cdot \frac{1-2i}{25} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{-8i+4}{25}\end{aligned} $$ | |
| ① | Divide $ \, i \, $ by $ \, -10+5i \, $ to get $\,\, \dfrac{1-2i}{25} $. ( view steps ) |
| ② | Multiply $4$ by $ \dfrac{1-2i}{25} $ to get $ \dfrac{-8i+4}{25} $. Step 1: Write $ 4 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 4 \cdot \frac{1-2i}{25} & \xlongequal{\text{Step 1}} \frac{4}{\color{red}{1}} \cdot \frac{1-2i}{25} \xlongequal{\text{Step 2}} \frac{ 4 \cdot \left( 1-2i \right) }{ 1 \cdot 25 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 4-8i }{ 25 } = \frac{-8i+4}{25} \end{aligned} $$ |