Tap the blue circles to see an explanation.
| $$ \begin{aligned}4\cdot23i-5\cdot(1-2i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}92i-(5-10i) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}92i-5+10i \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}102i-5\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{5} $ by $ \left( 1-2i\right) $ $$ \color{blue}{5} \cdot \left( 1-2i\right) = 5-10i $$ |
| ② | Remove the parentheses by changing the sign of each term within them. $$ - \left( 5-10i \right) = -5+10i $$ |
| ③ | Combine like terms: $$ \color{blue}{92i} -5+ \color{blue}{10i} = \color{blue}{102i} -5 $$ |