Tap the blue circles to see an explanation.
| $$ \begin{aligned}3i+\frac{1}{2-i}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{-3i^2+6i+1}{-i+2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{3+6i+1}{-i+2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{6i+4}{-i+2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{2+16i}{5}\end{aligned} $$ | |
| ① | Add $3i$ and $ \dfrac{1}{2-i} $ to get $ \dfrac{ \color{purple}{ -3i^2+6i+1 } }{ -i+2 }$. Step 1: Write $ 3i $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ② | $$ -3i^2 = -3 \cdot (-1) = 3 $$ |
| ③ | Simplify numerator $$ \color{blue}{3} +6i+ \color{blue}{1} = 6i+ \color{blue}{4} $$ |
| ④ | Divide $ \, 4+6i \, $ by $ \, 2-i \, $ to get $\,\, \dfrac{2+16i}{5} $. ( view steps ) |