Tap the blue circles to see an explanation.
| $$ \begin{aligned}3 \cdot \frac{i}{4+2i}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}3 \cdot \frac{1+2i}{10} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{6i+3}{10}\end{aligned} $$ | |
| ① | Divide $ \, i \, $ by $ \, 4+2i \, $ to get $\,\, \dfrac{1+2i}{10} $. ( view steps ) |
| ② | Multiply $3$ by $ \dfrac{1+2i}{10} $ to get $ \dfrac{6i+3}{10} $. Step 1: Write $ 3 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 3 \cdot \frac{1+2i}{10} & \xlongequal{\text{Step 1}} \frac{3}{\color{red}{1}} \cdot \frac{1+2i}{10} \xlongequal{\text{Step 2}} \frac{ 3 \cdot \left( 1+2i \right) }{ 1 \cdot 10 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 3+6i }{ 10 } = \frac{6i+3}{10} \end{aligned} $$ |