Tap the blue circles to see an explanation.
| $$ \begin{aligned}3i(2i+1)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}6i^2+3i \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-6+3i \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}3i-6\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{3i} $ by $ \left( 2i+1\right) $ $$ \color{blue}{3i} \cdot \left( 2i+1\right) = 6i^2+3i $$ |
| ② | $$ 6i^2 = 6 \cdot (-1) = -6 $$ |
| ③ | Combine like terms: $$ 3i-6 = 3i-6 $$ |