Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{32}{1+\frac{jx}{410}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{32}{\frac{jx+410}{410}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{13120}{jx+410}\end{aligned} $$ | |
| ① | Add $1$ and $ \dfrac{jx}{410} $ to get $ \dfrac{ \color{purple}{ jx+410 } }{ 410 }$. Step 1: Write $ 1 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ② | Divide $32$ by $ \dfrac{jx+410}{410} $ to get $ \dfrac{ 13120 }{ jx+410 } $. Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Write $ 32 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 3: Multiply numerators and denominators. Step 4: Simplify numerator and denominator. $$ \begin{aligned} \frac{32}{ \frac{\color{blue}{jx+410}}{\color{blue}{410}} } & \xlongequal{\text{Step 1}} 32 \cdot \frac{\color{blue}{410}}{\color{blue}{jx+410}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{32}{\color{red}{1}} \cdot \frac{410}{jx+410} \xlongequal{\text{Step 3}} \frac{ 32 \cdot 410 }{ 1 \cdot \left( jx+410 \right) } = \\[1ex] & \xlongequal{\text{Step 4}} \frac{ 13120 }{ jx+410 } \end{aligned} $$ |