Tap the blue circles to see an explanation.
| $$ \begin{aligned}3-\frac{i}{2}-(2+i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{-i+6}{2}-(2+i) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{-3i+2}{2}\end{aligned} $$ | |
| ① | Subtract $ \dfrac{i}{2} $ from $ 3 $ to get $ \dfrac{ \color{purple}{ -i+6 } }{ 2 }$. Step 1: Write $ 3 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ② | Subtract $2+i$ from $ \dfrac{-i+6}{2} $ to get $ \dfrac{ \color{purple}{ -3i+2 } }{ 2 }$. Step 1: Write $ 2+i $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |