Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{3}{z}-2\frac{i}{z^2}+\frac{-3z+2i}{z^2+1}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{3}{z}-\frac{2i}{z^2}+\frac{-3z+2i}{z^2+1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{-2iz+3z^2}{z^3}+\frac{-3z+2i}{z^2+1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{-2iz+3z^2}{z^5+z^3} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{-2i+3z}{z^4+z^2}\end{aligned} $$ | |
| ① | Multiply $2$ by $ \dfrac{i}{z^2} $ to get $ \dfrac{ 2i }{ z^2 } $. Step 1: Write $ 2 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 2 \cdot \frac{i}{z^2} & \xlongequal{\text{Step 1}} \frac{2}{\color{red}{1}} \cdot \frac{i}{z^2} \xlongequal{\text{Step 2}} \frac{ 2 \cdot i }{ 1 \cdot z^2 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 2i }{ z^2 } \end{aligned} $$ |
| ② | Subtract $ \dfrac{2i}{z^2} $ from $ \dfrac{3}{z} $ to get $ \dfrac{ \color{purple}{ -2iz+3z^2 } }{ z^3 }$. To subtract raitonal expressions, both fractions must have the same denominator. |
| ③ | Add $ \dfrac{-2iz+3z^2}{z^3} $ and $ \dfrac{-3z+2i}{z^2+1} $ to get $ \dfrac{ \color{purple}{ -2iz+3z^2 } }{ z^5+z^3 }$. To add raitonal expressions, both fractions must have the same denominator. |