Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{3}{2-i}-\frac{2}{4+i}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{5i+8}{-i^2-2i+8} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{5i+8}{1-2i+8} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{5i+8}{-2i+9} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{62+61i}{85}\end{aligned} $$ | |
| ① | Subtract $ \dfrac{2}{4+i} $ from $ \dfrac{3}{2-i} $ to get $ \dfrac{ \color{purple}{ 5i+8 } }{ -i^2-2i+8 }$. To subtract raitonal expressions, both fractions must have the same denominator. |
| ② | $$ -i^2 = -(-1) = 1 $$ |
| ③ | Simplify denominator $$ \color{blue}{1} -2i+ \color{blue}{8} = -2i+ \color{blue}{9} $$ |
| ④ | Divide $ \, 8+5i \, $ by $ \, 9-2i \, $ to get $\,\, \dfrac{62+61i}{85} $. ( view steps ) |