Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{3}{1+2i}+4\frac{i}{1-3i}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{3}{1+2i}+4\frac{-3+i}{10} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{3}{1+2i}+\frac{4i-12}{10} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{8i^2-20i+18}{20i+10} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{-8-20i+18}{20i+10} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{-20i+10}{20i+10} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}\frac{-3-4i}{5}\end{aligned} $$ | |
| ① | Divide $ \, i \, $ by $ \, 1-3i \, $ to get $\,\, \dfrac{-3+i}{10} $. ( view steps ) |
| ② | Multiply $4$ by $ \dfrac{-3+i}{10} $ to get $ \dfrac{4i-12}{10} $. Step 1: Write $ 4 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 4 \cdot \frac{-3+i}{10} & \xlongequal{\text{Step 1}} \frac{4}{\color{red}{1}} \cdot \frac{-3+i}{10} \xlongequal{\text{Step 2}} \frac{ 4 \cdot \left( -3+i \right) }{ 1 \cdot 10 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ -12+4i }{ 10 } = \frac{4i-12}{10} \end{aligned} $$ |
| ③ | Add $ \dfrac{3}{1+2i} $ and $ \dfrac{4i-12}{10} $ to get $ \dfrac{ \color{purple}{ 8i^2-20i+18 } }{ 20i+10 }$. To add raitonal expressions, both fractions must have the same denominator. |
| ④ | $$ 8i^2 = 8 \cdot (-1) = -8 $$ |
| ⑤ | Simplify numerator $$ \color{blue}{-8} -20i+ \color{blue}{18} = -20i+ \color{blue}{10} $$ |
| ⑥ | Divide $ \, 10-20i \, $ by $ \, 10+20i \, $ to get $\,\, \dfrac{-3-4i}{5} $. ( view steps ) |