Tap the blue circles to see an explanation.
| $$ \begin{aligned}2x-9x(x+4)-6x^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}2x-(9x^2+36x)-6x^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}2x-9x^2-36x-6x^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-15x^2-34x\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{9x} $ by $ \left( x+4\right) $ $$ \color{blue}{9x} \cdot \left( x+4\right) = 9x^2+36x $$ |
| ② | Remove the parentheses by changing the sign of each term within them. $$ - \left( 9x^2+36x \right) = -9x^2-36x $$ |
| ③ | Combine like terms: $$ \color{blue}{2x} \color{red}{-9x^2} \color{blue}{-36x} \color{red}{-6x^2} = \color{red}{-15x^2} \color{blue}{-34x} $$ |