Tap the blue circles to see an explanation.
| $$ \begin{aligned}2+j\cdot2\cdot\frac{22}{7}\cdot500& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}2+\frac{44j}{7}\cdot500 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}2+\frac{22000j}{7} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{22000j+14}{7}\end{aligned} $$ | |
| ① | Multiply $2j$ by $ \dfrac{22}{7} $ to get $ \dfrac{ 44j }{ 7 } $. Step 1: Write $ 2j $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 2j \cdot \frac{22}{7} & \xlongequal{\text{Step 1}} \frac{2j}{\color{red}{1}} \cdot \frac{22}{7} \xlongequal{\text{Step 2}} \frac{ 2j \cdot 22 }{ 1 \cdot 7 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 44j }{ 7 } \end{aligned} $$ |
| ② | Multiply $ \dfrac{44j}{7} $ by $ 500 $ to get $ \dfrac{ 22000j }{ 7 } $. Step 1: Write $ 500 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{44j}{7} \cdot 500 & \xlongequal{\text{Step 1}} \frac{44j}{7} \cdot \frac{500}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 44j \cdot 500 }{ 7 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 22000j }{ 7 } \end{aligned} $$ |
| ③ | Add $2$ and $ \dfrac{22000j}{7} $ to get $ \dfrac{ \color{purple}{ 22000j+14 } }{ 7 }$. Step 1: Write $ 2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |