Tap the blue circles to see an explanation.
| $$ \begin{aligned}2+\frac{i}{1}+i& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{i+2}{1}+i \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}2i+2\end{aligned} $$ | |
| ① | Add $2$ and $ \dfrac{i}{1} $ to get $ \dfrac{i+2}{1} $. Step 1: Write $ 2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add expressions with the same denominators, we add the numerators and write the result over the common denominator. $$ \begin{aligned} 2+ \frac{i}{1} & \xlongequal{\text{Step 1}} \frac{2}{\color{red}{1}} + \frac{i}{1} \xlongequal{\text{Step 2}} \frac{2}{\color{blue}{1}} + \frac{i}{\color{blue}{1}} = \\[1ex] &=\frac{ 2 + i }{ \color{blue}{ 1 }}= \frac{i+2}{1} \end{aligned} $$ |
| ② | Add $ \dfrac{i+2}{1} $ and $ i $ to get $ \dfrac{2i+2}{1} $. Step 1: Write $ i $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add expressions with the same denominators, we add the numerators and write the result over the common denominator. $$ \begin{aligned} \frac{i+2}{1} +i & \xlongequal{\text{Step 1}} \frac{i+2}{1} + \frac{i}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{i+2}{\color{blue}{1}} + \frac{i}{\color{blue}{1}} = \\[1ex] &=\frac{ i+2 + i }{ \color{blue}{ 1 }}= \frac{2i+2}{1} \end{aligned} $$ |