Tap the blue circles to see an explanation.
| $$ \begin{aligned}2+4 \cdot \frac{i}{2}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}2+\frac{4i}{2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{4i+4}{2}\end{aligned} $$ | |
| ① | Multiply $4$ by $ \dfrac{i}{2} $ to get $ \dfrac{ 4i }{ 2 } $. Step 1: Write $ 4 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 4 \cdot \frac{i}{2} & \xlongequal{\text{Step 1}} \frac{4}{\color{red}{1}} \cdot \frac{i}{2} \xlongequal{\text{Step 2}} \frac{ 4 \cdot i }{ 1 \cdot 2 } \xlongequal{\text{Step 3}} \frac{ 4i }{ 2 } \end{aligned} $$ |
| ② | Add $2$ and $ \dfrac{4i}{2} $ to get $ \dfrac{ \color{purple}{ 4i+4 } }{ 2 }$. Step 1: Write $ 2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |