Tap the blue circles to see an explanation.
| $$ \begin{aligned}2-5 \cdot \frac{i}{1}+6i& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}2-5i+6i \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}i+2\end{aligned} $$ | |
| ① | Multiply $5$ by $ \dfrac{i}{1} $ to get $ 5i$. Step 1: Write $ 5 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 5 \cdot \frac{i}{1} & \xlongequal{\text{Step 1}} \frac{5}{\color{red}{1}} \cdot \frac{i}{1} \xlongequal{\text{Step 2}} \frac{ 5 \cdot i }{ 1 \cdot 1 } \xlongequal{\text{Step 3}} \frac{ 5i }{ 1 } = \\[1ex] &=5i \end{aligned} $$ |
| ② | Combine like terms: $$ 2 \color{blue}{-5i} + \color{blue}{6i} = \color{blue}{i} +2 $$ |