Tap the blue circles to see an explanation.
| $$ \begin{aligned}2-3 \cdot \frac{i}{4}+3i& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}2-\frac{3i}{4}+3i \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{-3i+8}{4}+3i \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{9i+8}{4}\end{aligned} $$ | |
| ① | Multiply $3$ by $ \dfrac{i}{4} $ to get $ \dfrac{ 3i }{ 4 } $. Step 1: Write $ 3 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 3 \cdot \frac{i}{4} & \xlongequal{\text{Step 1}} \frac{3}{\color{red}{1}} \cdot \frac{i}{4} \xlongequal{\text{Step 2}} \frac{ 3 \cdot i }{ 1 \cdot 4 } \xlongequal{\text{Step 3}} \frac{ 3i }{ 4 } \end{aligned} $$ |
| ② | Subtract $ \dfrac{3i}{4} $ from $ 2 $ to get $ \dfrac{ \color{purple}{ -3i+8 } }{ 4 }$. Step 1: Write $ 2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ③ | Add $ \dfrac{-3i+8}{4} $ and $ 3i $ to get $ \dfrac{ \color{purple}{ 9i+8 } }{ 4 }$. Step 1: Write $ 3i $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |