Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{2}{8}-3i& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{ 2 : \color{orangered}{ 2 } }{ 8 : \color{orangered}{ 2 }} - 3i \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{1}{4}-3i \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{-12i+1}{4}\end{aligned} $$ | |
| ① | Divide both the top and bottom numbers by $ \color{orangered}{ 2 } $. |
| ② | Subtract $3i$ from $ \dfrac{1}{4} $ to get $ \dfrac{ \color{purple}{ -12i+1 } }{ 4 }$. Step 1: Write $ 3i $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |