Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{2}{1+3i}+\frac{7}{-4i}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{13i+7}{-12i^2-4i} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{13i+7}{12-4i} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{4+23i}{20}\end{aligned} $$ | |
| ① | Add $ \dfrac{2}{1+3i} $ and $ \dfrac{7}{-4i} $ to get $ \dfrac{ \color{purple}{ 13i+7 } }{ -12i^2-4i }$. To add raitonal expressions, both fractions must have the same denominator. |
| ② | $$ -12i^2 = -12 \cdot (-1) = 12 $$ |
| ③ | Divide $ \, 7+13i \, $ by $ \, 12-4i \, $ to get $\,\, \dfrac{4+23i}{20} $. ( view steps ) |