| $$ \begin{aligned}2pifrl\frac{i}{r+i\cdot2pifl}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{2fi^2lpr}{2fi^2lp+r}\end{aligned} $$ | |
| ① | Multiply $2filpr$ by $ \dfrac{i}{r+2fi^2lp} $ to get $ \dfrac{2fi^2lpr}{2fi^2lp+r} $. Step 1: Write $ 2filpr $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 2filpr \cdot \frac{i}{r+2fi^2lp} & \xlongequal{\text{Step 1}} \frac{2filpr}{\color{red}{1}} \cdot \frac{i}{r+2fi^2lp} \xlongequal{\text{Step 2}} \frac{ 2filpr \cdot i }{ 1 \cdot \left( r+2fi^2lp \right) } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 2fi^2lpr }{ r+2fi^2lp } = \frac{2fi^2lpr}{2fi^2lp+r} \end{aligned} $$ |