Tap the blue circles to see an explanation.
| $$ \begin{aligned}2\cdot3i\cdot(2+4i)& \xlongequal{ }6i\cdot(2+4i) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}12i+24i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}12i-24\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{6i} $ by $ \left( 2+4i\right) $ $$ \color{blue}{6i} \cdot \left( 2+4i\right) = 12i+24i^2 $$ |
| ② | $$ 24i^2 = 24 \cdot (-1) = -24 $$ |