Tap the blue circles to see an explanation.
| $$ \begin{aligned}1+i\frac{-1080+3360i}{2665}-2\frac{254-113i}{205}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}1+\frac{3360i^2-1080i}{2665}-\frac{-226i+508}{205} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}1+\frac{-3360-1080i}{2665}-\frac{-226i+508}{205} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}\frac{-1080i-695}{2665}-\frac{-226i+508}{205} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} } }}}\frac{1858i-7299}{2665}\end{aligned} $$ | |
| ① | Multiply $i$ by $ \dfrac{-1080+3360i}{2665} $ to get $ \dfrac{3360i^2-1080i}{2665} $. Step 1: Write $ i $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} i \cdot \frac{-1080+3360i}{2665} & \xlongequal{\text{Step 1}} \frac{i}{\color{red}{1}} \cdot \frac{-1080+3360i}{2665} \xlongequal{\text{Step 2}} \frac{ i \cdot \left( -1080+3360i \right) }{ 1 \cdot 2665 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ -1080i+3360i^2 }{ 2665 } = \frac{3360i^2-1080i}{2665} \end{aligned} $$ |
| ② | Multiply $2$ by $ \dfrac{254-113i}{205} $ to get $ \dfrac{-226i+508}{205} $. Step 1: Write $ 2 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 2 \cdot \frac{254-113i}{205} & \xlongequal{\text{Step 1}} \frac{2}{\color{red}{1}} \cdot \frac{254-113i}{205} \xlongequal{\text{Step 2}} \frac{ 2 \cdot \left( 254-113i \right) }{ 1 \cdot 205 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 508-226i }{ 205 } = \frac{-226i+508}{205} \end{aligned} $$ |
| ③ | $$ 3360i^2 = 3360 \cdot (-1) = -3360 $$ |
| ④ | Multiply $2$ by $ \dfrac{254-113i}{205} $ to get $ \dfrac{-226i+508}{205} $. Step 1: Write $ 2 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 2 \cdot \frac{254-113i}{205} & \xlongequal{\text{Step 1}} \frac{2}{\color{red}{1}} \cdot \frac{254-113i}{205} \xlongequal{\text{Step 2}} \frac{ 2 \cdot \left( 254-113i \right) }{ 1 \cdot 205 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 508-226i }{ 205 } = \frac{-226i+508}{205} \end{aligned} $$ |
| ⑤ | Add $1$ and $ \dfrac{-3360-1080i}{2665} $ to get $ \dfrac{ \color{purple}{ -1080i-695 } }{ 2665 }$. Step 1: Write $ 1 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ⑥ | Multiply $2$ by $ \dfrac{254-113i}{205} $ to get $ \dfrac{-226i+508}{205} $. Step 1: Write $ 2 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 2 \cdot \frac{254-113i}{205} & \xlongequal{\text{Step 1}} \frac{2}{\color{red}{1}} \cdot \frac{254-113i}{205} \xlongequal{\text{Step 2}} \frac{ 2 \cdot \left( 254-113i \right) }{ 1 \cdot 205 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 508-226i }{ 205 } = \frac{-226i+508}{205} \end{aligned} $$ |
| ⑦ | Subtract $ \dfrac{-226i+508}{205} $ from $ \dfrac{-1080i-695}{2665} $ to get $ \dfrac{ \color{purple}{ 1858i-7299 } }{ 2665 }$. To subtract raitonal expressions, both fractions must have the same denominator. |