Tap the blue circles to see an explanation.
| $$ \begin{aligned}1+2 \cdot \frac{i}{3}+i& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}1+\frac{2i}{3}+i \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{2i+3}{3}+i \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{5i+3}{3}\end{aligned} $$ | |
| ① | Multiply $2$ by $ \dfrac{i}{3} $ to get $ \dfrac{ 2i }{ 3 } $. Step 1: Write $ 2 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 2 \cdot \frac{i}{3} & \xlongequal{\text{Step 1}} \frac{2}{\color{red}{1}} \cdot \frac{i}{3} \xlongequal{\text{Step 2}} \frac{ 2 \cdot i }{ 1 \cdot 3 } \xlongequal{\text{Step 3}} \frac{ 2i }{ 3 } \end{aligned} $$ |
| ② | Add $1$ and $ \dfrac{2i}{3} $ to get $ \dfrac{ \color{purple}{ 2i+3 } }{ 3 }$. Step 1: Write $ 1 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ③ | Add $ \dfrac{2i+3}{3} $ and $ i $ to get $ \dfrac{ \color{purple}{ 5i+3 } }{ 3 }$. Step 1: Write $ i $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |