Tap the blue circles to see an explanation.
| $$ \begin{aligned}1-\frac{3}{4}x\cdot\frac{8}{9}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}1-\frac{3x}{4}\cdot\frac{8}{9} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}1-\frac{24x}{36} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{-24x+36}{36}\end{aligned} $$ | |
| ① | Multiply $ \dfrac{3}{4} $ by $ x $ to get $ \dfrac{ 3x }{ 4 } $. Step 1: Write $ x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{3}{4} \cdot x & \xlongequal{\text{Step 1}} \frac{3}{4} \cdot \frac{x}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 3 \cdot x }{ 4 \cdot 1 } \xlongequal{\text{Step 3}} \frac{ 3x }{ 4 } \end{aligned} $$ |
| ② | Multiply $ \dfrac{3x}{4} $ by $ \dfrac{8}{9} $ to get $ \dfrac{ 24x }{ 36 } $. Step 1: Multiply numerators and denominators. Step 2: Simplify numerator and denominator. $$ \begin{aligned} \frac{3x}{4} \cdot \frac{8}{9} \xlongequal{\text{Step 1}} \frac{ 3x \cdot 8 }{ 4 \cdot 9 } \xlongequal{\text{Step 2}} \frac{ 24x }{ 36 } \end{aligned} $$ |
| ③ | Subtract $ \dfrac{24x}{36} $ from $ 1 $ to get $ \dfrac{ \color{purple}{ -24x+36 } }{ 36 }$. Step 1: Write $ 1 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |