Tap the blue circles to see an explanation.
| $$ \begin{aligned}1-(-\frac{i}{i+1})+(i-1)i& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}1-\frac{-1-i}{2}+(i-1)i \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}1-\frac{-1-i}{2}+i^2-i \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}1-\frac{-1-i}{2}-1-i \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{i+3}{2}-1-i \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{-i+1}{2}\end{aligned} $$ | |
| ① | Divide $ \, -i \, $ by $ \, 1+i \, $ to get $\,\, \dfrac{-1-i}{2} $. ( view steps ) |
| ② | $$ \left( \color{blue}{i-1}\right) \cdot i = i^2-i $$ |
| ③ | $$ i^2 = -1 $$ |
| ④ | Subtract $ \dfrac{-1-i}{2} $ from $ 1 $ to get $ \dfrac{ \color{purple}{ i+3 } }{ 2 }$. Step 1: Write $ 1 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ⑤ | Add $ \dfrac{i+3}{2} $ and $ -1-i $ to get $ \dfrac{ \color{purple}{ -i+1 } }{ 2 }$. Step 1: Write $ -1-i $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |