Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{1}{i}+\frac{1}{1+i}+\frac{1}{1-i}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{2i+1}{i^2+i}+\frac{1}{1-i} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{2i+1}{-1+i}+\frac{1}{1-i} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{1-3i}{2}+\frac{1}{1-i} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{3i^2-4i+3}{-2i+2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{-3-4i+3}{-2i+2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}-\frac{4i}{-2i+2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} } }}}1-i \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle8}{\textcircled {8}} } }}}-i+1\end{aligned} $$ | |
| ① | Add $ \dfrac{1}{i} $ and $ \dfrac{1}{1+i} $ to get $ \dfrac{ \color{purple}{ 2i+1 } }{ i^2+i }$. To add raitonal expressions, both fractions must have the same denominator. |
| ② | $$ i^2 = -1 $$ |
| ③ | Divide $ \, 1+2i \, $ by $ \, -1+i \, $ to get $\,\, \dfrac{1-3i}{2} $. ( view steps ) |
| ④ | Add $ \dfrac{1-3i}{2} $ and $ \dfrac{1}{1-i} $ to get $ \dfrac{ \color{purple}{ 3i^2-4i+3 } }{ -2i+2 }$. To add raitonal expressions, both fractions must have the same denominator. |
| ⑤ | $$ 3i^2 = 3 \cdot (-1) = -3 $$ |
| ⑥ | Simplify numerator $$ \, \color{blue}{ -\cancel{3}} \,-4i+ \, \color{blue}{ \cancel{3}} \, = -4i $$ |
| ⑦ | Divide $ \, -4i \, $ by $ \, 2-2i \, $ to get $\,\, 1-i $. ( view steps ) |
| ⑧ | Combine like terms: $$ -i+1 = -i+1 $$ |