Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{1}{i^{11}}-\frac{1}{i^{21}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{1}{-i}-\frac{1}{i} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{2i}{-i^2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}2i\end{aligned} $$ | |
| ① | $$ i^{11} = i^{4 \cdot 2 + 3} =
\left( i^4 \right)^{ 2 } \cdot i^3 =
1^{ 2 } \cdot (-i) =
-i = -i $$$$ i^{21} = i^{4 \cdot 5 + 1} =
\left( i^4 \right)^{ 5 } \cdot i^1 =
1^{ 5 } \cdot i =
i $$ |
| ② | Subtract $ \dfrac{1}{i} $ from $ \dfrac{1}{-i} $ to get $ \dfrac{ \color{purple}{ 2i } }{ -i^2 }$. To subtract raitonal expressions, both fractions must have the same denominator. |
| ③ | $$ -i^2 = -(-1) = 1 $$ |