Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{1}{2}+\frac{1}{1+i\cdot3.8}+\frac{i}{4}& \xlongequal{ }\frac{1}{2}+\frac{1}{1+3i}+\frac{i}{4} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{3i+3}{6i+2}+\frac{i}{4} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{6-3i}{10}+\frac{i}{4} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{-i+12}{20}\end{aligned} $$ | |
| ① | Add $ \dfrac{1}{2} $ and $ \dfrac{1}{1+3i} $ to get $ \dfrac{ \color{purple}{ 3i+3 } }{ 6i+2 }$. To add raitonal expressions, both fractions must have the same denominator. |
| ② | Divide $ \, 3+3i \, $ by $ \, 2+6i \, $ to get $\,\, \dfrac{6-3i}{10} $. ( view steps ) |
| ③ | Add $ \dfrac{6-3i}{10} $ and $ \dfrac{i}{4} $ to get $ \dfrac{ \color{purple}{ -i+12 } }{ 20 }$. To add raitonal expressions, both fractions must have the same denominator. |