Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{1}{2}(\frac{2+i}{z-i}+\frac{2-i}{z+i})& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{1}{2}\frac{2i^2+4z}{-i^2+z^2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{2i^2+4z}{-2i^2+2z^2} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{i^2+2z}{-i^2+z^2}\end{aligned} $$ | |
| ① | Add $ \dfrac{2+i}{z-i} $ and $ \dfrac{2-i}{z+i} $ to get $ \dfrac{ \color{purple}{ 2i^2+4z } }{ -i^2+z^2 }$. To add raitonal expressions, both fractions must have the same denominator. |
| ② | Multiply $ \dfrac{1}{2} $ by $ \dfrac{2i^2+4z}{-i^2+z^2} $ to get $ \dfrac{ 2i^2+4z }{ -2i^2+2z^2 } $. Step 1: Multiply numerators and denominators. Step 2: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{2} \cdot \frac{2i^2+4z}{-i^2+z^2} & \xlongequal{\text{Step 1}} \frac{ 1 \cdot \left( 2i^2+4z \right) }{ 2 \cdot \left( -i^2+z^2 \right) } = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ 2i^2+4z }{ -2i^2+2z^2 } \end{aligned} $$ |