Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{1}{i\cdot4}-\frac{1}{1+i\cdot3.8}& \xlongequal{ }\frac{1}{i\cdot4}-\frac{1}{1+3i} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{-i+1}{12i^2+4i} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{-i+1}{-12+4i} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{-2+i}{20}\end{aligned} $$ | |
| ① | Subtract $ \dfrac{1}{1+3i} $ from $ \dfrac{1}{4i} $ to get $ \dfrac{ \color{purple}{ -i+1 } }{ 12i^2+4i }$. To subtract raitonal expressions, both fractions must have the same denominator. |
| ② | $$ 12i^2 = 12 \cdot (-1) = -12 $$ |
| ③ | Divide $ \, 1-i \, $ by $ \, -12+4i \, $ to get $\,\, \dfrac{-2+i}{20} $. ( view steps ) |