Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{1}{\frac{1}{80}+\frac{1}{150}+\frac{1}{31.8}i-6.28i}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{1}{\frac{23}{1200}+\frac{i}{31}-6.28i} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{1}{\frac{1200i+713}{37200}-6.28i} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{1}{\frac{1200i+713}{37200}-6i} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{1}{\frac{-222000i+713}{37200}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{37200}{-222000i+713}\end{aligned} $$ | |
| ① | Add $ \dfrac{1}{80} $ and $ \dfrac{1}{150} $ to get $ \dfrac{ \color{purple}{ 23 } }{ 1200 }$. To add fractions they must have the same denominator. |
| ② | Multiply $ \dfrac{1}{31} $ by $ i $ to get $ \dfrac{ i }{ 31 } $. Step 1: Write $ i $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{31} \cdot i & \xlongequal{\text{Step 1}} \frac{1}{31} \cdot \frac{i}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot i }{ 31 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ i }{ 31 } \end{aligned} $$ |
| ③ | Add $ \dfrac{23}{1200} $ and $ \dfrac{i}{31} $ to get $ \dfrac{ \color{purple}{ 1200i+713 } }{ 37200 }$. To add raitonal expressions, both fractions must have the same denominator. |
| ④ | Subtract $6i$ from $ \dfrac{1200i+713}{37200} $ to get $ \dfrac{ \color{purple}{ -222000i+713 } }{ 37200 }$. Step 1: Write $ 6i $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ⑤ | Divide $1$ by $ \dfrac{-222000i+713}{37200} $ to get $ \dfrac{ 37200 }{ -222000i+713 } $. Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Write $ 1 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 3: Multiply numerators and denominators. Step 4: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{ \frac{\color{blue}{-222000i+713}}{\color{blue}{37200}} } & \xlongequal{\text{Step 1}} 1 \cdot \frac{\color{blue}{37200}}{\color{blue}{-222000i+713}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{1}{\color{red}{1}} \cdot \frac{37200}{-222000i+713} \xlongequal{\text{Step 3}} \frac{ 1 \cdot 37200 }{ 1 \cdot \left( -222000i+713 \right) } = \\[1ex] & \xlongequal{\text{Step 4}} \frac{ 37200 }{ -222000i+713 } \end{aligned} $$ |