Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{1}{0.8i+\frac{1}{25+4i}}& \xlongequal{ }\frac{1}{0i+\frac{1}{25+4i}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{1}{\frac{1}{4i+25}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}4i+25\end{aligned} $$ | |
| ① | Add $0i$ and $ \dfrac{1}{25+4i} $ to get $ \dfrac{ \color{purple}{ 1 } }{ 4i+25 }$. Step 1: Write $ 0i $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ② | Divide $1$ by $ \dfrac{1}{4i+25} $ to get $ 4i+25$. Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Write $ 1 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 3: Multiply numerators and denominators. Step 4: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{ \frac{\color{blue}{1}}{\color{blue}{4i+25}} } & \xlongequal{\text{Step 1}} 1 \cdot \frac{\color{blue}{4i+25}}{\color{blue}{1}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{1}{\color{red}{1}} \cdot \frac{4i+25}{1} \xlongequal{\text{Step 3}} \frac{ 1 \cdot \left( 4i+25 \right) }{ 1 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 4}} \frac{ 4i+25 }{ 1 } =4i+25 \end{aligned} $$ |